Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sci Total Environ ; 913: 169735, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38163597

RESUMO

The conservation and management of riparian ecosystems rely on understanding the ecological consequences of anthropogenic stressors that impact natural communities. In this context, studies investigating the effects of anthropogenic stressors require reliable methods capable of mapping the relationships between taxa occurrence or abundance and environmental predictors within a spatio-temporal framework. Here, we present an integrative approach using DNA metabarcoding and Hierarchical Modelling of Species Communities (HMSC) to unravel the intricate dynamics and resilience of chironomid communities exposed to Bacillus thuringiensis var. israelensis (Bti). Chironomid emergence was sampled from a total of 12 floodplain pond mesocosms, half of which received Bti treatment, during a 16-week period spanning spring and summer of 2020. Subsequently, we determined the community compositions of chironomids and examined their genus-specific responses to the Bti treatment, considering their phylogenetic affiliations and ecological traits of the larvae. Additionally, we investigated the impact of the Bti treatment on the body size distribution of emerging chironomids. Our study revealed consistent responses to Bti among different chironomid genera, indicating that neither phylogenetic affiliations nor larval feeding strategies significantly contributed to the observed patterns. Both taxonomic and genetic diversity were positively correlated with the number of emerged individuals. Furthermore, our findings demonstrated Bti-related effects on chironomid body size distribution, which could have relevant implications for size-selective terrestrial predators. Hence, our study highlights the value of employing a combination of DNA metabarcoding and HMSC to unravel the complex dynamics of Bti-related non-target effects on chironomid communities. The insights gained from this integrated framework contribute to our understanding of the ecological consequences of anthropogenic stressors and provide a foundation for informed decision-making regarding the conservation and management of riparian ecosystems.


Assuntos
Bacillus thuringiensis , Chironomidae , Culicidae , Humanos , Animais , Ecossistema , Chironomidae/fisiologia , Controle de Mosquitos/métodos , Código de Barras de DNA Taxonômico , Filogenia , Larva , Controle Biológico de Vetores
2.
J Med Entomol ; 61(1): 166-174, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788073

RESUMO

Control of mosquito vector populations is primarily intended to reduce the transmission of pathogens they transmit. Use of chemical controls, such as larvicides, can have unforeseen consequences on adult traits if not applied properly. The consequences of under application of larvicides are little studied, specifically the impacts on pathogen infection and transmission by the vectors that survive exposure to larvicides. We compared vector susceptibility of Aedes aegypti (L.) for dengue virus, serotype 1 (DENV-1) previously exposed as larvae to an LC50 of different classes of insecticides as formulated larvicides. Larval exposure to insect growth regulators (methoprene and pyriproxyfen) significantly increased susceptibility to infection of DENV-1 in Ae. aegypti adults but did not alter disseminated infection or transmission. Larval exposure to temephos, spinosad, and Bti did not increase infection, disseminated infection, or transmission of DENV-1. Our findings describe a previously under observed phenomenon, the latent effects of select larvicides on mosquito vector susceptibility for arboviruses. These data suggest that there are unintended consequences of sublethal exposure to select larvicides that can influence susceptibility of Ae. aegypti to DENV infection, and indicates the need for further investigation of sublethal effects of insecticides on other aspects of mosquito biology, especially those parameters relevant to a mosquitoes ability to transmit arboviruses (life span, biting behavior, extrinsic incubation period).


Assuntos
Aedes , Vírus da Dengue , Dengue , Inseticidas , Animais , Dengue/prevenção & controle , Inseticidas/farmacologia , Larva , Mosquitos Vetores , Temefós/farmacologia
3.
Sci Total Environ ; 896: 165322, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37414178

RESUMO

Mosquitoes, including invasive species like the Asian tiger mosquito Aedes albopictus, alongside native species Culex pipiens s.l., pose a significant nuisance to humans and serve as vectors for mosquito-borne diseases in urban areas. Understanding the impact of water infrastructure characteristics, climatic conditions, and management strategies on mosquito occurrence and effectiveness of control measures to assess their implications on mosquito occurrence is crucial for effective vector control. In this study, we examined data collected during the local vector control program in Barcelona, Spain, focusing on 234,225 visits to 31,334 different sewers, as well as 1817 visits to 152 fountains between 2015 and 2019. We investigated both the colonization and recolonization processes of mosquito larvae within these water infrastructures. Our findings revealed higher larval presence in sandbox-sewers compared to siphonic or direct sewers, and the presence of vegetation and the use of naturalized water positively influenced larval occurrence in fountains. The application of larvicidal treatment significantly reduced larvae presence; however, recolonization rates were negatively affected by the time elapsed since treatment. Climatic conditions played a critical role in the colonization and recolonization of sewers and urban fountains, with mosquito occurrence exhibiting non-linear patterns and, generally, increasing at intermediate temperatures and accumulated rainfall levels. This study emphasizes the importance of considering sewers and fountains characteristics and climatic conditions when implementing vector control programs to optimize resources and effectively reduce mosquito populations.


Assuntos
Aedes , Culex , Humanos , Animais , Mosquitos Vetores , Cidades , Água , Larva
4.
Bull Environ Contam Toxicol ; 110(4): 70, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959482

RESUMO

The biocide Bacillus thuringiensis var. israelensis (Bti) is applied to wetlands to control nuisance by mosquitoes. Amphibians inhabiting these wetlands can be exposed to Bti multiple times, potentially inducing oxidative stress in developing tadpoles. For biochemical stress responses, ambient water temperature plays a key role. Therefore, we exposed tadpoles of the European common frog (Rana temporaria) three times to field-relevant doses of Bti in outdoor floodplain pond mesocosms (FPM) under natural environmental conditions. We sampled tadpoles after each Bti application over the course of a 51-day experiment (April to June 2021) and investigated the activity of the glutathione-S-transferase (GST) and protein carbonyl content as a measure for detoxification activity and oxidative damage. GST activity increased over the course of the experiment likely due to a general increase of water temperature. We did not observe an effect of Bti on either of the investigated biomarkers under natural ambient temperatures. However, Bti-induced effects may be concealed by the generally low water temperatures in our FPMs, particularly at the first application in April, when we expected the highest effect on the most sensitive early stage tadpoles. In light of the global climate change, temperature-related effects of pesticides and biocides on tadpoles should be carefully monitored - in particular since they are known as one of the factors driving the worldwide decline of amphibian populations.


Assuntos
Bacillus thuringiensis , Desinfetantes , Animais , Rana temporaria , Controle de Mosquitos , Larva , Desinfetantes/farmacologia , Lagoas , Carbonilação Proteica , Glutationa Transferase , Água
5.
Environ Pollut ; 316(Pt 1): 120488, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306884

RESUMO

Chironomid larvae (Diptera: Chironomidae) often dominate aquatic macroinvertebrate communities and are a key food source for many aquatic predators, such as dragonfly and damselfly larvae (Odonata). Changes in aquatic macroinvertebrate communities may propagate through terrestrial food webs via altered insect emergence. Bacillus thuringiensis israelensis (Bti)-based larvicides are widely used in mosquito control but can also reduce the abundance of non-biting chironomid larvae. We applied the maximum field rate of Bti used in mosquito control three times to six mesocosms in a replicated floodplain pond mesocosm (FPM) system in spring for two consecutive years, while the remaining six FPMs were untreated. Three weeks after the third Bti application in the first year, we recorded on average a 41% reduction of chironomid larvae in Bti-treated FPMs compared to untreated FPMs and a shift in benthic macroinvertebrate community composition driven by the reduced number of chironomid, Libellulidae and Coenagrionidae larvae (Odonata). Additionally, the number of emerging Libellulidae (estimated by sampling of exuviae in the second year) was reduced by 54% in Bti-treated FPMs. Since Odonata larvae are not directly susceptible to Bti, our results suggest indirect effects due to reduced prey availability (i.e., chironomid larvae) or increased intraguild predation. As Libellulidae include species of conservation concern, the necessity of Bti applications to their habitats, e.g. floodplains, should be carefully evaluated.


Assuntos
Bacillus thuringiensis , Chironomidae , Odonatos , Animais , Controle de Mosquitos , Larva , Controle Biológico de Vetores
6.
Insects ; 13(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36354801

RESUMO

Mosquito management programs in the urban environment of Italian cities mainly rely on larval control with conventional insecticides, primarily targeting the road drains that constitute the principal mosquito breeding sites encountered in public. The repeated utilization of synthetic insecticides may have adverse effects on non-targets and lead to resistance development issues, while the performance of biopesticides encounters limitations in field use. Botanical insecticides as single larval control agents or in binary mixtures with conventional insecticides have been extensively studied in the laboratory as an effective and eco-friendly alternative mosquito control method with promising results. The study herein concerns the investigation, for the first time under realistic conditions in the field, of the joint action of a carvacrol-rich oregano Essential Oil (EO) with two conventional insecticides, namely, the insect growth regulator diflubenzuron and the bio-insecticide Bacillus thuringiensis israelensis (B.t.i.), in road drains in Crevalcore city, Italy, against Culex pipiens and Aedes albopictus. According to the obtained results, the application of both plain EO and its mixtures with diflubenzuron and B.t.i. exerted very high efficacy in terms of immature mosquito population reduction over a two-week period. Three weeks after treatment, the performance of the oil and its mixtures diminished but remained high, while the addition of diflubenzuron potentiated the persistent action of the oil against Cx. pipiens. These findings are indicative of the potential of mixing carvacrol-rich EO with diflubenzuron and B.t.i. as an efficient eco-friendly alternative to mono-insecticide applications in road drains against Cx. pipiens and Ae. albopictus larvae.

7.
Parasit Vectors ; 15(1): 423, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36369170

RESUMO

BACKGROUND: The common house mosquito Culex pipiens is known to be a major vector for West Nile virus. In order to decrease risks of West Nile virus outbreaks in Europe, insecticides and the bio-larvicide Bacillus thuringiensis israelensis (Bti) are commonly used for vector control. Alarmingly, insecticide resistance has been reported in Cx. pipiens populations from Southern Europe and several countries neighbouring Europe. For Central and Northern Europe, however, the phenotypic insecticide resistance status of Cx. pipiens has not yet been investigated. METHODS: A literature review was performed to assess the geographical distribution of insecticide resistance in Cx. pipiens. To fill the gap of knowledge for Central and Northern Europe, WHO susceptibility tests with permethrin, deltamethrin, malathion, bendiocarb and DDT and a larval toxicity test with Bti were performed with a Cx. pipiens population from Belgium, a country in Central Europe. RESULTS: This research provides the first evidence of widespread phenotypic insecticide resistance in Cx. pipiens. In general, Cx. pipiens developed resistance against multiple insecticides in several countries. Another Cx. pipiens population from Belgium was tested and showed insecticide resistance against deltamethrin, permethrin, DDT and possibly against bendiocarb. The bio-larvicide Bti caused lower mortality than reported for other Cx. pipiens populations in the literature. CONCLUSIONS: These results indicate the urgent need for insecticide resistance monitoring against commonly used adulticides and larvicides in Europe, for the translation of knowledge gained regarding the limited efficiency and availability of insecticide into EU legislation and the need for innovative non-chemical vector control tools in order to counter the widespread insecticide resistance in Culex populations.


Assuntos
Bacillus thuringiensis , Culex , Inseticidas , Vírus do Nilo Ocidental , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Permetrina , DDT , Controle de Mosquitos , Mosquitos Vetores
8.
J Am Mosq Control Assoc ; 38(4): 250-260, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318783

RESUMO

Chemical control of vectors depends on the effective application of formulated insecticides. In this study we evaluated formulated larvicides using a larval bioassay against susceptible Aedes aegypti. The estimated larvicide lethal concentrations for 50% mortality (LC50s) were 25.7 µg/liter (Natular 2EC), 3.13 µg/liter (Abate 4E), 0.43 µg/liter (Altosid), 0.03 µg/liter (Nyguard), and 500.6 ITU/liter (VectoBac12AS containing Bacillus thuringiensis israelensis). Sublethal effects were identified and documented from adults that survived exposure to these estimated LC50s (body size and sex proportion). We observed changes in net growth as measured by adult wing lengths. For those larvae exposed to estimated LC50s, the average size of adults was between 0.1% and 10.6% smaller for males and between 1.1% and 13.6% smaller for females compared to controls. Sex proportions varied between larvicides, but some were significantly different from the control, favoring greater survival of females than males.


Assuntos
Aedes , Bacillus thuringiensis , Inseticidas , Animais , Feminino , Masculino , Controle de Mosquitos , Mosquitos Vetores , Temefós/farmacologia , Inseticidas/farmacologia , Larva
9.
Ecotoxicol Environ Saf ; 243: 114004, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007317

RESUMO

Bacillus thuringiensis subsp. israelensis (Bti) is the main larvicide used to control mosquitoes worldwide. Although there is accumulating evidence of Bti having environmental effects on non-target fauna, relatively few field studies have documented the fate of Bti spores in the environment. Spore density was quantified over a 6-yr period (2012-2017) in Mediterranean marshes sprayed with Vectobac 12AS (32 ITU/ha) since 2006 to reduce the nuisance caused by Aedes caspius. Bti spores were naturally found in all habitat types. Spore density expressed as colony-forming units per gram of soil (CFU g-1) increased significantly at treated sites by a factor of 22 to 500 times relative to control sites, with mean values of 7730 CFU g-1 in halophilous scrubs, 38,000 in reed beds, 49,000 in bulrush beds and 50 000 in rush beds. Spore density varied little in the first months after the spraying season (April-October), but increased sharply in spring, just before the annual launch of mosquito control. Considering that Bti is an insect pathogen that cannot proliferate without a suitable insect host, this unexpected recrudescence in spring could be related to the warming of water that triggers activity and development of benthic organisms such as chironomids, which may contribute to Bti proliferation by ingesting accumulated spores at the surface of sediments. While spore density tends to decrease over time, presumably during the summer period as a result of increased UV exposure, three to four years were necessary for spore density to return to normal levels after mosquito-control interruption. This study is important because it demonstrates that environmental effects of mosquito-control using Bti can far exceed the short period of Bti efficacy against lentic mosquitoes. Considering that Bti is a microbial agent, these long-term effects should be addressed at multiple levels of ecosystem organization from a one-health perspective.


Assuntos
Aedes , Bacillus thuringiensis , Animais , Ecossistema , Larva , Controle de Mosquitos , Controle Biológico de Vetores , Esporos Bacterianos , Áreas Alagadas
10.
Parasit Vectors ; 15(1): 9, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34983608

RESUMO

BACKGROUND: The invasive species Aedes albopictus, commonly known as the Asian tiger mosquito, has undergone extreme range expansion by means of steady introductions as blind passengers in vehicles traveling from the Mediterranean to south-west Germany. The more than 25 established populations in the State of Baden-Württemberg, Palatine and Hesse (south-west Germany) have become a major nuisance and public health threat. Aedes albopictus deserves special attention as a vector of arboviruses, including dengue, chikungunya and Zika viruses. In Germany, Ae. albopictus control programs are implemented by local communities under the auspices of health departments and regulatory offices. METHODS: The control strategy comprised three pillars: (i) community participation (CP) based on the elimination of breeding sites or improved environmental sanitation, using fizzy tablets based on Bacillus thuringiensis israelensis (fizzy Bti tablets; Culinex® Tab plus); (ii) door-to-door (DtD) control by trained staff through the application of high doses of a water-dispersible Bti granular formulation (Vectobac® WG) aimed at achieving a long-lasting killing effect; and (iii) implementation of the sterile insect technique (SIT) to eliminate remaining Ae. albopictus populations. Prior to initiating large-scale city-wide treatments on a routine basis, the efficacy of the three elements was evaluated in laboratory and semi-field trials. Special emphasis was given to the mass release of sterile Ae. albopictus males. RESULTS: More than 60% of the local residents actively participated in the first pillar (CP) of the large-scale control program. The most effective element of the program was found to be the DtD intervention, including the application of Vectobac® WG (3000 ITU/mg) to potential breeding sites (10 g per rainwater container, maximum of 200 l = maximum of approx. 150,000 ITU/l, and 2.5 g per container < 50 l) with a persistence of at least 3 weeks. In Ludwigshafen, larval source management resulted in a Container Index for Ae. albopictus of < 1% in 2020 compared to 10.9% in 2019. The mean number of Aedes eggs per ovitrap per 2 weeks was 4.4 in Ludwigshafen, 18.2 in Metzgergrün (Freiburg) (SIT area) and 22.4 in the control area in Gartenstadt (Freiburg). The strong reduction of the Ae. albopictus population by Bti application was followed by weekly releases of 1013 (Ludwigshafen) and 2320 (Freiburg) sterile Ae. albopictus males per hectare from May until October, resulting in a high percentage of sterile eggs. In the trial areas of Ludwigshafen and Frieburg, egg sterility reached 84.7 ± 12.5% and 62.7 ± 25.8%, respectively; in comparison, the natural sterility in the control area was 14.6 ± 7.3%. The field results were in line with data obtained in cage tests under laboratory conditions where sterility rates were 87.5 ± 9.2% after wild females mated with sterile males; in comparison, the sterility of eggs laid by females mated with unirradiated males was only 3.3 ± 2.8%. The overall egg sterility of about 84% in Ludwigshafen indicates that our goal to almost eradicate the Ae. albopictus population could be achieved. The time for inspection and treatment of a single property ranged from 19 to 26 min depending on the experience of the team and costs 6-8 euros per property. CONCLUSIONS: It is shown that an integrated control program based on a strict monitoring scheme can be most effective when it comprises three components, namely CP, DtD intervention that includes long-lasting Bti-larviciding to strongly reduce Ae. albopictus populations and SIT to reduce the remaining Ae. albopictus population to a minimum or even to eradicate it. The combined use of Bti and SIT is the most effective and selective tool against Ae. albopictus, one of the most dangerous mosquito vector species.


Assuntos
Aedes/fisiologia , Controle de Mosquitos/métodos , Aedes/efeitos da radiação , Animais , Feminino , Alemanha , Humanos , Infertilidade Masculina , Masculino , Pupa/efeitos da radiação , Controle de Qualidade
11.
J Vector Ecol ; 46(1): 30-33, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-35229579

RESUMO

Attractive toxic sugar baits (ATSB) are a novel and effective mosquito control tool based on sugar-feeding behaviors and oral ingestion. In general, there is a demand from consumers for more novel control products with more effective active ingredients. Bacillus thuringiensis israelensis (BTi) is a major larvicide for control of mosquito larvae. This study evaluated BTi as an active ingredient of toxic sugar baits (TSB) against adult Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus, compared with a positive control of 1% boric acid toxic sugar bait. Ingestion of BTi TSB by female mosquitoes resulted in an average mortality at 48 h of 97% for Ae. aegypti, 98% for Ae. albopictus, and 100% for Cx. quinquefasciatus. The study findings suggest ingestible BTi TSBs could be a viable alternative to current mosquito control strategies and programs against adults of these three species of mosquitoes.


Assuntos
Aedes , Bacillus thuringiensis , Culex , Animais , Feminino , Controle de Mosquitos/métodos , Açúcares
12.
Pest Manag Sci ; 77(4): 1981-1989, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33314578

RESUMO

BACKGROUND: With a shortage of effective options for control of Aedes aegypti in Puerto Rico due to widespread resistance to conventional mosquito adulticides, an alternative approach was investigated to reduce vector populations. In two areas (totaling 144 ha) of the municipality of Bayamón, Puerto Rico, Bacillus thuringiensis israelensis (Bti) AM65-52 WDG was applied at a rate of 500 g/ha using vehicle-mounted aqueous wide-area larvicide spray applications weekly for 4 weeks and then every other week for a further 16 weeks. Bioassay jars were placed in the field to monitor for deposition of Bti droplets in open spaces, and under vegetation and building coverage. Autocidal gravid ovitraps were placed throughout the field site to monitor the population of adult female Ae. aegypti in both treatment and control sites. RESULTS: Larvicide spray was successfully deposited into jars in an array of open and covered locations, as confirmed by larval bioassays. After the fourth weekly spraying, differences in autocidal gravid ovitrap densities were observed between treatment and control sites resulting in 62% (P = 0.0001) and 28% (P < 0.0001) reductions in adult female Ae. aegypti numbers. CONCLUSION: Repeated wide-area larvicide spray application of Bti AM65-52 WDG to residential areas in Puerto Rico effectively suppressed dengue vector populations. The success of this trial has led to expansion of the WALS® program to a larger area of Bayamón and other municipalities in Puerto Rico. © 2020 Society of Chemical Industry.


Assuntos
Aedes , Bacillus thuringiensis , Animais , Feminino , Larva , Controle de Mosquitos , Mosquitos Vetores , Porto Rico
13.
Malar J ; 19(1): 195, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487233

RESUMO

BACKGROUND: To further reduce malaria, larval source management (LSM) is proposed as a complementary strategy to the existing strategies. LSM has potential to control insecticide resistant, outdoor biting and outdoor resting vectors. Concerns about costs and operational feasibility of implementation of LSM at large scale are among the reasons the strategy is not utilized in many African countries. Involving communities in LSM could increase intervention coverage, reduce costs of implementation and improve sustainability of operations. Community acceptance and participation in community-led LSM depends on a number of factors. These factors were explored under the Majete Malaria Project in Chikwawa district, southern Malawi. METHODS: Separate focus group discussions (FGDs) were conducted with members from the general community (n = 3); health animators (HAs) (n = 3); and LSM committee members (n = 3). In-depth interviews (IDIs) were conducted with community members. Framework analysis was employed to determine the factors contributing to community acceptance and participation in the locally-driven intervention. RESULTS: Nine FGDs and 24 IDIs were held, involving 87 members of the community. Widespread knowledge of malaria as a health problem, its mode of transmission, mosquito larval habitats and mosquito control was recorded. High awareness of an association between creation of larval habitats and malaria transmission was reported. Perception of LSM as a tool for malaria control was high. The use of a microbial larvicide as a form of LSM was perceived as both safe and effective. However, actual participation in LSM by the different interviewee groups varied. Labour-intensiveness and time requirements of the LSM activities, lack of financial incentives, and concern about health risks when wading in water bodies contributed to lower participation. CONCLUSION: Community involvement in LSM increased local awareness of malaria as a health problem, its risk factors and control strategies. However, community participation varied among the respondent groups, with labour and time demands of the activities, and lack of incentives, contributing to reduced participation. Innovative tools that can reduce the labour and time demands could improve community participation in the activities. Further studies are required to investigate the forms and modes of delivery of incentives in operational community-driven LSM interventions.


Assuntos
Anopheles , Participação da Comunidade/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Malária/psicologia , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores , Animais , Anopheles/crescimento & desenvolvimento , Grupos Focais , Larva/crescimento & desenvolvimento , Malária/prevenção & controle , Malaui , Mosquitos Vetores/crescimento & desenvolvimento
14.
Trop Med Infect Dis ; 5(2)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370071

RESUMO

Bacillus thuringiensis israelensis (Bti) is an effective biological insecticide for killing mosquito larvae. However, choosing the suitable application method for larviciding is critical in increasing its effectiveness. Therefore, this study aimed to determine the effectiveness of Bti (VectoBac®) WG using various applications at high-rise buildings. Three different applications of Bti treatment were applied at three high-rise buildings in Bandar Saujana Putra. The ULV machine is used for Pangsapuri Impian, a mist blower for Pangsapuri Seri Saujana and a pressured sprayer for BSP 21. BSP Skypark does not undergo treatment and acts as a control. The efficacy of Bti treatment was measured by analyzing the ovitrap surveillance data collected (POI and MLT) for pre and post-treatment. Post-treatment ovitrap surveillance indicates that the Aedes sp. mosquito density was lower than the density at the time of pre-treatment surveillance. Overall, the Aedes albopictus species in both an indoor and outdoor environment setting had shown a reduction. The highest Aedes sp. density reduction is seen through the use of mist blowers in outdoor settings for Aedes albopictus, (%POI reduction = 87.4%; %MLT reduction = 93.8%). The mist blower yielded results that is significantly higher compared to other larviciding applications; the order from greatest to the least was mist blower > pressured sprayer > ULV. It can be concluded that each application produces different degrees of effectiveness in reducing the Aedes sp. density in different environmental settings.

15.
Malar J ; 18(1): 405, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31806029

RESUMO

BACKGROUND: Vector control is a key component of malaria prevention. Two major vector control strategies have been implemented in São Tomé and Príncipe (STP), indoor residual spraying (IRS) and outdoor larval control using Bacillus thuringiensis israelensis (Bti). This study evaluated post-intervention effects of control strategies on vector population density, composition, and knockdown resistance mutation, and their implications for malaria epidemiology in STP. METHODS: Mosquitoes were collected by indoor and outdoor human landing catches and mosquito light traps in seven districts. Mosquito density was calculated by numbers of captured adult mosquitoes/house/working hour. Mitochondrial cytochrome c oxidase subunit I (COI) was PCR amplified and sequenced to understand the spatial-temporal population composition of malaria vector in STP. Knockdown resistance L1014F mutation was detected using allele-specific PCR. To estimate the malaria transmission risks in STP, a negative binomial regression model was constructed. The response variable was monthly incidence, and the explanatory variables were area, rainfall, entomological inoculation rate (EIR), and kdr mutation frequency. RESULTS: Malaria vector in STP is exophilic Anopheles coluzzii with significant population differentiation between Príncipe and São Tomé (mean FST = 0.16, p < 0.001). Both vector genetic diversity and knockdown resistance mutation were relatively low in Príncipe (mean of kdr frequency = 15.82%) compared to São Tomé (mean of kdr frequency = 44.77%). Annual malaria incidence rate in STP had been rapidly controlled from 37 to 2.1% by three rounds of country-wide IRS from 2004 to 2007. Long-term application of Bti since 2007 kept the mosquito density under 10 mosquitoes/house/hr/month, and malaria incidence rate under 5% after 2008, except for a rising that occurred in 2012 (incidence rate = 6.9%). Risk factors of area (São Tomé compared to Príncipe), rainfall, outdoor EIR, and kdr mutation frequency could significantly increase malaria incidence by 9.33-11.50, 1.25, 1.07, and 1.06 fold, respectively. CONCLUSIONS: Indoor residual spraying could rapidly decrease Anopheles density and malaria incidence in STP. Outdoor larval control using Bti is a sustainable approach for controlling local vector with exophilic feature and insecticide resistance problem. Vector control interventions should be intensified especially at the north-eastern part of São Tomé to minimize impacts of outbreaks.


Assuntos
Anopheles , Bacillus thuringiensis/química , Inseticidas , Controle de Mosquitos , Mosquitos Vetores , Animais , Anopheles/crescimento & desenvolvimento , Feminino , Larva/crescimento & desenvolvimento , Malária/prevenção & controle , São Tomé e Príncipe
16.
Malar J ; 18(1): 311, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521176

RESUMO

BACKGROUND: Malaria remains one of the most important causes of morbidity and death in sub-Saharan Africa. Along with early diagnosis and treatment of malaria cases and intermittent preventive treatment in pregnancy (IPTp), vector control is an important tool in the reduction of new cases. Alongside the use of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), targeting the vector larvae with biological larvicides, such as Bacillus thuringiensis israelensis (Bti) is gaining importance as a means of reducing the number of mosquito larvae before they emerge to their adult stage. This study presents data corroborating the entomological impact of such an intervention in a rural African environment. METHODS: The study extended over 2 years and researched the impact of biological larviciding with Bti on malaria mosquitoes that were caught indoors and outdoors of houses using light traps. The achieved reductions in female Anopheles mosquitoes were calculated for two different larviciding choices using a regression model. RESULTS: In villages that received selective treatment of the most productive breeding sites, the number of female Anopheles spp. dropped by 61% (95% CI 54-66%) compared to the pre-intervention period. In villages in which all breeding sites were treated, the number of female Anopheles spp. was reduced by 70% (95% CI 64-74%) compared to the pre-intervention period. CONCLUSION: It was shown that malaria vector abundance can be dramatically reduced through larviciding of breeding habitats and that, in many geographical settings, they are a viable addition to current malaria control measures.


Assuntos
Anopheles , Bacillus thuringiensis/química , Inseticidas/uso terapêutico , Controle de Mosquitos/métodos , Mosquitos Vetores , Controle Biológico de Vetores/métodos , Animais , Anopheles/crescimento & desenvolvimento , Burkina Faso , Feminino , Larva/crescimento & desenvolvimento , Mosquitos Vetores/crescimento & desenvolvimento
17.
Sci Total Environ ; 686: 1173-1184, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31412513

RESUMO

The biocide Bacillus thuringiensis israelensis (Bti) has become the most commonly used larvicide to control mosquitoes in seasonal wetlands. Although Bti is considered non-toxic to most aquatic organisms, the non-biting chironomids show high susceptibilities towards Bti. As chironomids are a key element in wetland food webs, major declines in their abundance could lead to indirect effects that may be passed through aquatic and terrestrial food chains. We conducted two mesocosm experiments to address this hypothesis by assessing direct and indirect effects of Bti-modified availability of macroinvertebrate and zooplankton food resources on the predatory larvae of palmate and smooth newts (Urodelans: Lissotriton helveticus, Lissotriton vulgaris). We examined newt survival rates and dietary composition by means of stable isotope (δ15N and δ13C) analysis in the presence of Bti treatment and a predator (Odonata: Aeshna cyanea). We assessed palmate newts' body size at and time to metamorphosis while developing in Bti treated mesocosms. Chironomid larvae were the most severely affected aquatic invertebrates in all Bti treated food chains and experienced abundance reductions by 50 to 87%. Moreover, stable isotope analysis revealed that chironomids were preferred over other invertebrates and comprised the major part in newts' diet (56%) regardless of their availability. The dragonfly A. cyanea decreased survival of newt larvae by 27% in Bti treated mesocosms showing affected chironomid abundances. Increasing intraguild predation is most likely favored by the Bti-induced reduction of alternative prey such as chironomid larvae. The decreased food availability after Bti treatment led to slightly smaller L. helveticus metamorphs while their developmental time was not affected. Our findings highlight the crucial role of chironomids in the food webs of freshwater ecosystems. We are also emphasizing the importance of reconsidering human-induced indirect effects of mosquito control on valuable wetland ecosystems particularly in the context of worldwide amphibian and insect declines.


Assuntos
Bacillus thuringiensis , Cadeia Alimentar , Controle de Mosquitos , Odonatos/fisiologia , Salamandridae/fisiologia , Áreas Alagadas , Animais , Alemanha , Larva/crescimento & desenvolvimento , Larva/fisiologia , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Odonatos/crescimento & desenvolvimento , Comportamento Predatório , Salamandridae/crescimento & desenvolvimento
18.
Ecotoxicol Environ Saf ; 181: 121-129, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176246

RESUMO

Biocides based on toxins of Bacillus thuringiensis var. israelensis (Bti) are established as alternatives to conventional chemical insecticides for mosquito control all across the globe since they are regarded ecologically compatible and harmless to non-target species. Since recent studies on amphibian larvae have called this opinion into question, we exposed Rana temporaria tadpoles to single (1 mg/L), tenfold (10 mg/L) and hundredfold (100 mg/L) field concentrations of VectoBac® WG (a water dispersible granule Bti formulation) in the laboratory for eleven days to investigate whether larvae were adversely affected by Bti and its endotoxin proteins. In addition to a negative (water) control, a positive control based on organic rice protein (50 mg/L) was run to check for the nutritional relevance of Bti proteins. There was no Bti-related mortality and a histopathological analysis of tadpole intestines revealed no adverse effects. Analyses of biomarkers for proteotoxicity (stress protein family, Hsp70) and neurotoxicity or metabolic action (b-esterases acetylcholine esterase (AChE) and carboxylesterases) revealed no significant differences between Bti treatments and the negative control. The responses of tadpoles in the protein-supplemented positive control differed from those of the negative control and the Bti treatments. Tadpoles in the positive control had reduced body mass and elevated AChE activity.


Assuntos
Bacillus thuringiensis , Endotoxinas/toxicidade , Inseticidas/toxicidade , Rana temporaria/crescimento & desenvolvimento , Animais , Larva/efeitos dos fármacos , Controle Biológico de Vetores
19.
Malar J ; 18(1): 55, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808348

RESUMO

BACKGROUND: Biotic and abiotic factors have been reported to affect the larvicidal efficacy of Bacillus thuringiensis israelensis (Bti) and Bacillus sphaericus (Bs), although the extent to which they are affected has been poorly documented. This paper studies the effect of sunlight exposure on the efficacy of a new larvicide formulation based on both Bti and Bs, herein after referred to as BTBSWAX, applied against two different larval stages. METHODS: The emergence of inhibition exhibited by BTBSWAX at three different dosages (1 g/m2, 1.5 g/m2, and 2 g/m2) was monitored under semi-field conditions using a total of 32 containers comprising 16 that were covered and 16 that were uncovered. Two experiments were conducted using first- and second-instar larvae of Anopheles gambiae, respectively. RESULTS: BTBSWAX at 2 g/m2 in covered containers exhibited high emergence inhibition (> 80%) when larvae were exposed from 1st instar on day-6 post-treatment, whereas the emergence inhibition was only 28% in uncovered containers. For larvae exposed from 1st instar on day-12 post-treatment, the emergence inhibition was moderate (70%) in covered containers but was low (< 20%) in uncovered containers. For larvae exposed from 2nd instar on day-10 post-treatment, the emergence inhibition was moderate (31%) in covered containers but was very low (< 10%) in uncovered containers. Moreover, the residual efficacy of BTBSWAX was markedly affected by environmental stresses, including sunlight exposure (Hazard ratio (HR) = 0.12, p < 0.001 and HR = 0.63, p = 0.033 for BTBSWAX at 2 g/m2 against 1st and 2nd instar larvae, respectively). CONCLUSION: These findings emphasize the impact of environmental variables (e.g., sunlight exposure) on the residual efficacy of Bti and Bs biolarvicides in the field. They hence highlight the need to take these factors into account for larvicide formulation development processes. Moreover, studies of the ecology of Anopheles larvae in targeted areas are also crucial for the integration of larval control strategies into malaria transmission plans devised by national malaria control programmes of endemic countries.


Assuntos
Anopheles/fisiologia , Bacillus/patogenicidade , Bacillus/efeitos da radiação , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Luz Solar , Animais , Anopheles/microbiologia , Bioensaio , Feminino , Larva/microbiologia , Larva/fisiologia
20.
J Environ Sci Health B ; 53(11): 719-728, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869930

RESUMO

An industrial-scale, profitable method for production of the most widely used bioinsecticide, Bacillus thuringiensis (Bt), is challenging because of its widespread application. The aim of this study is to present a strategy to develop a low-cost, large-scale bioprocess to produce Bt H14. This study was first focused on the design of a culture medium composed of economical and available components, such as glycerol and lysed Saccharomyces cerevisiae. The production goal of 1200 ITU was achieved using a medium composed of 20:20 g L-1of glycerol:lysed yeast in batch cultures. Efforts were subsequently focused on the design of an appropriate culture system, and an original two-stage culture system was proposed. First, yeast (the primary component of the culture medium) are cultivated using a minimal mineral medium and lysed, and in the second stage, Bt is cultivated in the same bioreactor using the lysed yeasts as culture medium (supplemented with a feeding pulse of 10 g L-1 glycerol). This system was called fed batch one pot (FOP). A new inoculation strategy is also presented in this study, since these Bt cultures were inoculated directly with heat pre-treated spores instead of vegetative bacteria to facilitate the bioprocess. This study was developed from the laboratory to production-scale bioreactors (measuring from 500 mL to 2500 L), and the efficiency of the proposed strategy was evident in LD50 tests results, achieving 1796 ITU in large-scale processes. Both the use of non-conventional sources and the process development for biomass production are important for cost-effective production of Bt-based insecticides in mosquito control projects.


Assuntos
Bacillus thuringiensis/crescimento & desenvolvimento , Biotecnologia/métodos , Meios de Cultura/química , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Biotecnologia/economia , Biotecnologia/instrumentação , Temperatura Alta , Inseticidas , Projetos Piloto , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...